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In a series of three talks, we give an introduction to Davis’s
construction of peculiar aspherical manifolds and give a quick
tour through the resulting zoo of aspherical manifolds.
These notes contain a primer of the subject (describing the basic
tools and results), a schedule for the three talks, as well as some
illustrative material.

1 A quick tour through the quick tour

The class of aspherical manifolds plays an important rôle in various fields
of topology. For instance, according to the Borel conjecture, aspherical
manifolds should be very rigid topological objects. Two natural perspectives
on aspherical manifolds are established by the questions “Which manifolds
have a contractible universal covering?” and “Which groups admit a model
for the classifying space that happens to be a manifold?”. The condition for
a topological space to be both a manifold and aspherical is very restrictive
and for a long time basically the only known examples were the ones given by
non-positively curved Riemannian manifolds and fibre bundle constructions.

The perception of aspherical manifolds changed drastically when Davis in
his landmark paper [2] provided the first construction of exotic aspherical
manifolds – more specifically, of closed, aspherical manifolds whose universal
covering is not homeomorphic to Euclidean space(!). Subsequently, Davis
and others refined this technique to construct closed, aspherical manifolds
with exotic fundamental groups and exotic geometric properties [3, 4].
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Mirror, mirror on the wall . . .

The key idea underlying Davis’s construction is to glue copies of an aspher-
ical space along certain subspaces, called mirrors, according to the com-
binatorics of an abstract reflection group – when the input space and the
reflection group are chosen appropriately, the glued space is an aspherical
manifold; taking quotients then leads to closed, aspherical manifolds.

In the following, we describe these steps in more detail:

– Input. We start with a compact, aspherical space X together with a
closed subspace ∂X, which is triangulated as a flag complex.∂X

in
X

– The associated Coxeter group and mirror structure. From the flag
complex ∂X we can read off the presentation of a group W ; namely,S =

s t

∂X
= {s, t}

W = 〈s, t | s2, t2〉 ∼= D∞ we take the set S of vertices as generators (of order 2) and for every
simplex of ∂X, we introduce the relation that the product of the ver-
tices of this simplex has order 2. It turns out that (W,S) is an abstract
reflection group – more precisely, a right-angled Coxeter group.

As mirrors on X we choose the family (Xs)s∈S of subspaces Xs

of ∂X that are – in a certain sense – fixed under s ∈ S ⊂ W . More
X

Xs Xt

explicitly, for s ∈ S, the space Xs is just the closed star of s in the
barycentric subdivision of ∂X.

– The gluing construction. The fundamental step of the whole construc-
tion is gluing copies of X along the mirrors (Xs)s∈S of X via the
combinatorics given by the Coxeter group (W,S). The resulting space

s t st

is denoted by U(W,X), and carries a proper, cocompact W -action.
At this point it is crucial that we are dealing with a Coxeter group

and that the mirror structure on X is also linked to this Coxeter group.
In fact, this guarantees that we can write U(W,X) as an increasing
union of aspherical pieces and hence that U(W,X) is aspherical.

– Finding a compact quotient. In general, the space U(W,X) will be
non-compact. Because W acts cocompactly on U(W,X), for everyΓ = 〈(st)2〉 ⊂ W

U(W,X)/Γ ∼=
subgroup Γ of W of finite index, the quotient U(W,X)/Γ is compact.
Furthermore, the obvious retraction U(W,X) −→ X induces a retrac-
tion U(W,X)/Γ −→ X.

In particular, if (X, ∂X) is a compact aspherical manifold with
boundary and if Γ is a torsion-free subgroup of W of finite index,
then U(W,X)/Γ is a closed, aspherical manifold that retracts onto X.
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Tailoring aspherical manifolds

By adapting certain parameters of the construction described above, we can
tailor aspherical manifolds with peculiar properties. Most of these adapted
constructions provide examples of the following two types:

– Aspherical manifolds with exotic fundamental groups. By thickening
finite simplicial models, for every group G of type F we can find a
model (X, ∂X) of BG that is a manifold with (triangulated) boundary.
Applying the assembly line above to the input (X, ∂X) results in a
closed, aspherical manifold that retracts onto X.

In particular, strange groups of type F give rise to closed, aspheri-
cal manifolds with exotic fundamental groups. For example, one can
conclude that there exist closed, aspherical manifolds whose funda-
mental group is not residually finite or whose fundamental group has
unsolvable word problem.

– Aspherical manifolds with exotic geometric properties. Choosing as
inputs aspherical spaces (X, ∂X) with exotic geometric properties, also
the closed, aspherical manifolds M resulting from the assembly line
above will have exotic geometric properties.

For instance, starting with a triangulable homology sphere ∂X, we
can always find a contractible manifold X whose boundary coincides
with ∂X. Then M is a closed, aspherical manifold. If ∂X is not simply
connected, then the universal covering (which is U(W,X) in this case)
of M is not simply connected at infinity. In particular, if dim M > 2,
then M is not covered by Euclidean space.

Another interesting choice is to take a compact, aspherical mani-
fold (X, ∂X) with triangulated boundary whose Spivak normal fibra-
tion does not reduce to a linear vector bundle. Then the Spivak normal
fibration of M does not reduce to a linear vector bundle and hence M
is an example of a closed, aspherical manifold that is not smoothable.

A comprehensive account of the applications emerging from such con-
structions is part of Davis’s book [4], covering also various consequences for
group cohomology as well as the aspect of curvature.
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2 Schedule

First session { Reflection groups

Introduction and Overview (Clara Löh; 15 min.). A brief introduction
into the subject (cf. Section 1) describing the fundamental questions,
tools and results, including an overview of the topics of the talks.

Abstract reflection groups (Christian Siegemeyer; 75 min.). This
talk provides an introduction to abstract reflection groups (i.e., to
Coxeter groups) – starting from the basic terminology for Coxeter
groups (Coxeter systems, reflection systems, spherical subsets/cosets,
. . . ), then proceeding to basic algebraic properties of Coxeter groups
(in particular, cosets of special subgroups), and ending with the com-
plexes associated to Coxeter groups (the nerve, the Davis complex,
the Cayley 2-complex).

Probably, these concepts are best accompanied with a few elemen-
tary running examples (for instance, the infinite dihedral group, sym-
metric groups, reflection groups in the model spaces of Riemannian
geometry, . . . ).

Literature. [4, Chapter 2.2, Chapter 3 (Theorem 3.3.4), Chapter 4.1
(Theorem 4.1.6), Chapter 7.1, p. 126] · [1, Chapters I and II]

Second session { Mirrored spaces

Mirrored spaces and the gluing construction (Christian Wegner;
40 min.). Definition of mirrored spaces, the gluing construction, the
Davis complex from the perspective of mirrored spaces (including the
cell structure and examples).

Literature. [4, Chapter 5.1, 5.2, Chapter 7.2–7.4]

Algebraic topology of the gluing construction (Wolfgang Steimle;
50 min.). This talk should explain (at least the ideas behind) the
computations of the homology, the fundamental group and the funda-
mental group at infinity of the gluing construction. In particular, the
asphericity criterion for the gluing construction should be presented.

Literature. [4, Chapter 8.1, 8.2 (Corollaries 8.2.8, Theorem 8.2.13),
Chapter 9 (Theorems 9.1.3, 9.1.5, 9.2.2)]
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Third session { Exotic aspherical manifolds

The reflection group trick (Thilo Küssner; 60 min.). Description of
the reflection group trick and its applications. A selection of appli-
cations should be sketched – e.g., the existence of oriented, closed,
connected aspherical manifolds with fundamental groups that are not
residually finite, that have unsolvable word problem, etc. A short
sketch of the proof that finitely generated Coxeter groups are virtu-
ally torsion free should be given. Additionally, the consequences of
the reflection group trick from the point of view of the isomorphism
conjectures could be discussed.

Literature. [4, (Chapter 10.1), Chapter 11.1, 11.2, 11.3?, 11.4?,
Chapter 6.12] · [5]

Aspherical manifolds not covered by Euclidean space (Clara Löh;
30 min.). This talk should sketch Davis’s construction of aspheri-
cal manifolds not covered by Euclidean space, including the necessary
background on homology spheres (which are a crucial ingredient of
this construction).

Literature. [4, Chapter 10.3, 10.5]
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3 Guinea pig { growing a torus familiaris

In the following, we illustrate the basic assembly line for aspherical man-
ifolds at a simple example; in particular, this will also present us with an
opportunity to get acquainted with the notation involved in the construc-
tions.

As guinea pig we take the unit square (X, ∂X) :=
(
[0, 1]2, ∂([0, 1]2)

)
,

which is an aspherical manifold with boundary, and equip ∂X with the
“obvious” triangulation as a flag complex.

s4

s1 s1 s2

s3s4

The associated Coxeter group. From the flag complex ∂X we read off the
right-angled Coxeter group (W,S) given by S := {s1, . . . , s4} and

W :=
〈
S

∣∣ s2
1, s

2
2, s

2
3, s

2
4, (s1s2)2, (s2s3)2, (s3s4)2, (s4s1)2

〉
.

(Notice that indeed the nerve L(W,S) of (W,S) is isomorphic to the flag
complex ∂X).

The mirror structure. As next step, we determine the induced mirror
structure on X: For s ∈ S the mirror Xs is the closed star of s in the
barycentric subdivision of the boundary ∂X = L(W,S).

For convenience, we now identify (X, ∂X) with the mirrored space ob-
tained from X by applying the (relative) homeomorphism that “pushes the
vertices of the square towards the interior.”

s

Xs

Xs2Xs1

Xs3Xs4

The gluing construction. The fundamental step of the whole construction
is gluing copies of X along the mirrors (Xs)s∈S of X via the combina-
torics given by the Coxeter group (W,S); this results in the aspherical(!)
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space U(W,X). Notice that U(W,X) is a manifold equipped with an obvi-
ous proper, cocompact W -action.

s1 s2

s3s4

s3

s3

s4

s4

s3

s3

s4

s4

s3

s3

s4

s4

s1

s1

s2

s2

s1

s1

s2

s2

Finding a compact quotient. In order to obtain a compact aspherical
manifold, we form the quotient of U(W,X) by a torsion-free subgroup of W
of finite index: Because (W,S) is a right-angled Coxeter group, its com-
mutator subgroup Γ is a torsion-free subgroup of finite index. It is not
difficult to see that Γ is the (normal) subgroup of W generated by [s1, s3]
and [s2, s4]; moreover, a straightforward computation shows that these two
elements commute and that Γ ∼= Z × Z. So the quotient U(W,X)/Γ is
the torus obtained from the sixteen copies of X depicted above by gluing
opposite edges of the large square.

The retraction U(W,X)/Γ −→ X is the one induced from the obvious
retraction U(W,X) −→ X given by folding U(W,X) onto X.

Exercise. In this example, how does the Davis complex Σ(W,S), i.e., the
simplicial complex associated to the poset of all cosets of spherical subsets
of (W,S), look like? (A subset of S is spherical if it generates a finite
subgroup in W .)

Exercise. Carry out this construction for the thickening [0, 1]2 \ [1/3, 2/3]2

of S1 in R2 (with the obvious triangulation of the boundary).
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4 Cheat sheet { Ubiquitous complexes

L(W,S) [for a Coxeter system (W,S)]
the nerve of the Coxeter system (W,S), i.e., the simplicial com-
plex associated with the poset of all non-empty spherical subsets
of S [4, p. 123].
If (W,S) is a right-angled Coxeter system, then L(W,S) is a flag
complex; conversely, every flag complex is of this form.

K(W,S) [for a Coxeter system (W,S)]
the simplicial complex associated with the poset of all spheri-
cal subsets of S [4, p. 126]; hence, K(W,S) is the cone of the
barycentric subdivision of L(W,S).

Σ(W,S) [for a Coxeter system (W,S)]
the Davis complex of the Coxeter system (W,S), i.e., the simpli-
cial complex associated with the poset of all W -cosets of spherical
subgroups of W [4, p. 126].
The Davis complex Σ(W,S) is contractible and a model for
the classifying space of proper W -actions [4, Theorems 8.2.13
and 12.3.4]. In a certain sense, Σ(W,S) serves as a replacement
for the model spaces Rn, Sn, Hn for the classical case of geomet-
ric reflection groups.
Notice that in the theory of buildings the notation Σ(W,S) is
used for the simplicial complex associated with the poset of all
W -cosets of all subgroups of W generated by subsets of S.

U(G, X) [for a mirrored space X with mirrors (Xs)s∈S and a correspond-
ing family (Gs)s∈S of subgroups of G]
the gluing construction of X [4, p. 64].
The most prominent case is that of U(W,X) where X has a closed
subspace ∂X that is triangulated as a flag complex and (W,S) is
the associated right-angled Coxeter group (hence, ∂X coincides
with L(W,S) and the mirrors (Xs)s∈S and the family of sub-
groups of W are chosen appropriately) [4, p. 66, 212]. Notice that
U(W,K(W,S)) ∼= Σ(W,S) for all Coxeter systems (W,S) (where
we take L(W,S) ⊂ K(W,S) as the triangulated subspace).
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