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Abstract. Taking the `1-completion and the topological dual of the singular chain
complex gives rise to `1-homology and bounded cohomology respectively. Un-
like `1-homology, bounded cohomology is quite well understood by the work of
Gromov and Ivanov. We derive a mechanism linking isomorphisms on the level
of homology of Banach chain complexes to isomorphisms on the level of coho-
mology of the dual Banach cochain complexes and vice versa. Therefore, certain
results on bounded cohomology can be transferred to `1-homology. For example,
we obtain a new proof that `1-homology depends only on the fundamental group
and that `1-homology admits a description in terms of projective resolutions.
Mathematics Subject Classification (2000) – 55N35, 46M10, 57N99

1 Introduction

The simplicial volume is a topological invariant of oriented manifolds measuring
the complexity of the fundamental class with real coefficients with respect to the
`1-norm: If M is an oriented, closed, connected n-manifold, then the simplicial
volume of M is defined as

‖M‖ :=
{
‖c‖1

∣∣ c ∈ Cn (M) is an R-fundamental cycle of M
}

.

For example, the simplicial volume of spheres and tori is zero, whereas the sim-
plicial volume of negatively curved manifolds is non-zero [4, 14]. Various results
indicate that the simplicial volume is a “topological approximation” of the Rieman-
nian volume:

• If M is an oriented, closed, connected, hyperbolic n-manifold, then ‖M‖ =
vol(M)/vn [3, 14, 1].
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Figure (1.1): Linking various (co)homology theories related to singular homology

• If M and N are oriented, closed, connected, Riemannian manifolds with iso-
metric Riemannian universal covering, then [3, 14, 13]

‖M‖
vol(M)

=
‖N‖

vol(N)
.

• If M is an oriented, closed, connected, smooth n-manifold, then [3]

‖M‖ ≤ (n − 1)n · n! ·minvol(M).

It is almost impossible to calculate the simplicial volume directly. However, Gro-
mov discovered that bounded cohomology can be used to systematically study the
simplicial volume [3]. Bounded cohomology is the functional analytic twin of sin-
gular cohomology – it is defined using the topological dual of the singular chain
complex instead of the algebraic one. This change of the underlying cochain com-
plex results in quite peculiar behaviour:

• Bounded cohomology of spaces with amenable fundamental group vanishes
(in non-zero degree) [3, 5].

• Bounded cohomology depends only on the fundamental group [3, 5].

• However, there is still a description of bounded cohomology of groups in
terms of a certain flavour of homological algebra [5].

The corresponding homology theory is `1-homology – defined via the `1-com-
pletion of the singular chain complex (cf. Figure (1.1)) – and it is natural to ask
whether `1-homology behaves similarly. For example:

• Does `1-homology of spaces with amenable fundamental group vanish?

• Does `1-homology also depend only on the fundamental group?

• Can `1-homology of groups be described in terms of homological algebra?
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Isomorphisms in `1-homology 2 Homology of normed chain complexes

• More generally, how are bounded cohomology and `1-homology related? Is
there some kind of duality?

Matsumoto and Morita [10] found the following duality principle: Bounded co-
homology of a space vanishes if and only if its `1-homology vanishes. In particular,
the first question can be answered affirmatively.

Bouarich [2] gave the first proof that `1-homology depends only on the funda-
mental group. His proof relies on results in bounded cohomology, the duality prin-
ciple by Matsumoto and Morita [10] and an `1-version of Brown’s theorem.

We show that applying Matsumoto and Morita’s duality principle (generalised
to all Banach chain complexes and their duals [6; Proposition 1.2]) to mapping
cones of morphisms of Banach chain complexes allows to translate certain results
from bounded cohomology to `1-homology and vice versa (see Theorem (3.1) and
Section 4); however, one can show that there is no real duality between `1-homology
and bounded cohomology [7; Remark 3.3].

Our translation mechanism establishes links between `1-homology and bounded
cohomology of discrete groups, as well as between `1-homology of spaces and `1-
homology of their fundamental group, analogous to Ivanov’s result on bounded
cohomology. In particular, this gives a new proof that `1-homology of a space
depends only on its fundamental group and since `1-homology of groups admits
a description in terms of homological algebra, the same is true for `1-homology of
spaces. This is explained in Section 4 – more details and more general results can
be found in the original article [7].

In comparison to Bouarich’s proof, our approach needs more information about
bounded cohomology, but seems to be in total more lightweight and yields more
general results.

Moreover, Park [9] tried to use an approach similar to Ivanov’s work on bounded
cohomology to prove, for example, that `1-homology of spaces depends only on the
fundamental group. However, not all of Ivanov’s arguments can be carried over to
`1-homology and her proofs contain a significant gap [7; Caveat 5.9 and 6.4].

2 Homology of normed chain complexes

In this section, we introduce the basic objects of study, i.e., normed chain complexes
and their homology.

2.1 Normed chain complexes

Definition (2.1). 1. A normed chain complex is a chain complex of normed
vector spaces, where all boundary morphisms are bounded linear operators.
Analogously, a normed cochain complex is a cochain complex of normed
vector spaces, where all coboundary morphisms are bounded linear opera-
tors.
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2 Homology of normed chain complexes Isomorphisms in `1-homology

2. A Banach (co)chain complex is a normed (co)chain complex consisting of
Banach spaces.

3. A morphism of normed (co)chain complexes is a (co)chain map between
normed (co)chain complexes consisting of bounded operators. �

In this talk, all Banach spaces are Banach spaces over R and all (co)chain com-
plexes are indexed over N.

Example (2.2). Let X be a topological space.

1. The `1-norm on the singular chain complex C∗ (X) with real coefficients is
defined as follows: If c = ∑k

j=0 aj · σj ∈ C∗ (X), then

‖c‖1 :=
k

∑
j=0

|aj|.

2. The boundary operator ∂n : Cn (X) → Cn−1 (X) is – with respect to the `1-
norm – a bounded operator with operator norm (n + 1). Hence, C∗ (X) is a
normed chain complex. Clearly, C∗ (X) is in general not complete and thus
this complex is no Banach chain complex.

3. Let p ∈ (1, ∞]. Then the singular chain complex with respect to the `p-norm is
not a normed chain complex, because the boundary operator is not bounded:
For example, for n ∈ N let σ1, . . . , σn : ∆k −→ X be n distinct k-simplices
satsifying ∂σ1 = · · · = ∂σn. We now consider cn := 1/n · (σ1 + · · · + σn) ∈
Ck (X). By definition, ∂cn is independent of n, but limn→∞ ‖cn‖p = 0. �

Definition (2.3). Let (C, ∂) be a normed chain complex.

1. The completion (C, ∂) of C is the Banach chain complex defined by (C)n :=
Cn. Since ∂n : Cn −→ Cn−1 is a bounded operator, it extends to a bounded
operator ∂n : Cn −→ Cn−1, which clearly satisfies ∂ ◦ ∂ = 0.

2. The dual cochain complex (C′, ∂′) is the Banach cochain complex defined by

∀n∈N (C′)n := (Cn)′,

where · ′ stands for taking the (topological) dual normed vector space, to-
gether with the coboundary operators (∂′)n := (∂n+1)′ and the norm given
by ‖ f ‖∞ := sup

{
| f (c)|

∣∣ c ∈ Cn, ‖c‖ = 1
}

for f ∈ (C′)n. �

Example (2.4). Let X be a topological space.

1. The `1-chain complex of X is the `1-completion

C`1

∗ (X) := C∗ (X)
`1

of the normed chain complex C∗ (X).
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2. The Banach cochain complex

C∗
b(X) :=

(
C`1

∗ (X)
)′ =

(
C∗ (X)

)′
is called the bounded cochain complex of X.

3. If f : X −→ Y is a continuous map of topological spaces, then the induced
map C∗ ( f ) : C∗ (X) −→ C∗ (Y) is a chain map that is bounded in each de-
gree (with operator norm equal to 1), i.e., it is a morphism of normed chain
complexes. Its extension C`1

∗ ( f ) : C`1
∗ (X) −→ C`1

∗ (Y) is a morphism of Ba-
nach chain complexes and its dual C∗

b( f ) : C∗
b(Y) −→ C∗

b(X) is a morphism of
Banach cochain complexes. �

Other prominent examples of Banach (co)chain complexes are `1-chain com-
plexes and bounded cochain complexes of discrete groups (see Subsection 4.2).

2.2 Semi-norms on homology

Clearly, the presence of chain complexes calls for the investigation of the corre-
sponding homology. In the case of normed chain complexes, the homology groups
carry an additional piece of information – the semi-norm.

Definition (2.5). 1. Let (C, ∂) be a normed chain complex and let n ∈ N. The
n-th homology of C is the quotient

Hn(C) :=
ker(∂n : Cn → Cn−1)

im(∂n+1 : Cn+1 → Cn)
.

2. Dually, if (C, δ) is a normed cochain complex, then its n-th cohomology is the
quotient

Hn(C) :=
ker(δn : Cn → Cn+1)

im(δn−1 : Cn−1 → Cn)
.

3. Let C be a normed chain complex. Then the norm ‖ · ‖ on C induces a semi-
norm, also denoted by ‖ · ‖, on the homology H∗(C) as follows: If α ∈ Hn(C),
then

‖α‖ := inf
{
‖c‖

∣∣ c ∈ Cn, ∂(c) = 0, [c] = α
}

.

Similarly, we define a semi-norm on the cohomology of normed cochain com-
plexes. �

Example (2.6). Let X be a topologica space.

1. The `1-homology of X is defined as

H`1

∗ (X) := H∗
(
C`1

∗ (X)
)
.

Dually, the bounded cohomology of X is given by

H∗
b(X) := H∗(C∗

b(X)
)
.

Clara Löh – clara.loeh@uni-muenster.de 5



3 Duality Isomorphisms in `1-homology

2. The semi-norms on H`1
∗ (X) and H∗

b(X) are the ones induced by ‖ · ‖1 and ‖ · ‖∞
respectively and are also denoted by ‖ · ‖1 and ‖ · ‖∞ respectively.

3. If f : X −→ Y is a continuous map of pairs of topological spaces, then the
maps on `1-homology and bounded cohomology induced by C`1

∗ ( f ) and C∗
b( f )

are denoted by H`1
∗ ( f ) and H∗

b( f ) respectively. �

An example of a topological invariant defined in terms of the `1-semi-norm on
singular homology is the simplicial volume:

Example (2.7). Let M be an oriented, closed, connected n-dimensional manifold
and let [M] ∈ Hn (M) be the image of the integral fundamental class of M under
the change of coefficients homomorphism. Then the simplicial volume of M is
defined as

‖M‖ :=
∥∥[M]

∥∥
1. �

Because the images of the (co)boundary operators of Banach (co)chain complexes
are not necessarily closed, the induced semi-norms on (co)homology need not be
norms. Therefore, it is sometimes convenient to look at the corresponding reduced
versions H∗(C) and H∗(C) instead.

Remark (2.8). Any morphism f : C −→ D of normed chain complexes induces
linear maps Hn( f ) : Hn(C) −→ Hn(D). Since f is continuous in each degree,
these maps descend to linear maps Hn( f ) : Hn(C) −→ Hn(D). Moreover, the
maps Hn( f ) and Hn( f ) are bounded.

In order to understand semi-norms on the homology of normed chain com-
plexes, it suffices to consider the case of Banach chain complexes. Namely, by
approximating boundaries one obtains [7, 11; Proposition 2.7, Lemma 2.9]:

Proposition (2.9). Let D be a normed chain complex and let C be a dense subcom-
plex. Then the induced map H∗(C) −→ H∗(D) is isometric. In particular, the induced
map H∗(C) −→ H∗(D) must be injective.

Example (2.10). Let X be a topological space. Then the homomorphism H∗ (X) −→
H`1
∗ (X) induced by the inclusion C∗ (X) ⊂ C`1

∗ (X) is isometric with respect to the
semi-norms on H∗ (X) and H`1

∗ (X) induced by the `1-norm.
In particular, if H`1

n (X) = 0, then ‖α‖1 = 0 for all α ∈ Hn (X). �

Therefore, the simplicial volume can be computed by `1-homology. Compared
to singular homology, `1-homology and bounded cohomology share the advantage
to vanish for a large class of spaces.

3 Duality

The goal is now to find a mechanism that allows to translate results from bounded
cohomology to `1-homology and vice versa. I.e., we are searching for an analog

6 Clara Löh – clara.loeh@uni-muenster.de



Isomorphisms in `1-homology 3 Duality

(or at least an approximation) in the framework of Banach chain complexes of the
following classical theorem: If C is an R-chain complex, then the Kronecker product
yields a natural isomorphism

H∗(homR(C, R)
) ∼= homR

(
H∗(C), R

)
.

Our main result is:

Theorem (3.1). Let f : C −→ D be a morphism of Banach chain complexes and let
f ′ : D′ −→ C′ be its dual.

1. The induced map H∗( f ) : H∗(C) −→ H∗(D) is an isomorphism of vector spaces if
and only if H∗( f ′) : H∗(D′) −→ H∗(C′) is an isomorphism of vector spaces.

2. If H∗( f ′) : H∗(D′) −→ H∗(C′) is an isometric isomorphism, then also H∗( f ) is an
isometric isomorphism.

First steps towards a proof of this theorem are the following observations by
Johnson [6]/Matsumoto and Morita [10], and Gromov [3, 1] respectively:

Theorem (3.2) (Duality principle). Let C be a Banach chain complex and let C′ be its
dual. Then H∗(C) vanishes if and only if H∗(C′) vanishes.

This duality principle can be understood as an “absolute” version of duality,
whereas Theorem (3.1) can be viewed as a “relative” version. The duality principle
shows in particular that `1-homology is not always trivial.

Theorem (3.3) (Duality principle for semi-norms). Let C be a normed chain complex
and let n ∈ N. Then

‖α‖ = sup
{ 1
‖ϕ‖∞

∣∣∣ ϕ ∈ Hn(C′) and 〈ϕ, α〉 = 1
}

holds for each α ∈ Hn(C). Here, sup ∅ := 0.

Example (3.4). In particular, the simplicial volume can not only be computed by
`1-homology, but also by bounded cohomology. Historically, this was the first sys-
tematic approach to study simplicial volume. �

Thus it might be tempting to aim at a result of the type: Let C be a Banach chain
complex. Then the Kronecker product induces a natural isomorphism

H∗(C′) ∼=
(

H∗(C)
)′ or H∗(C′) ∼=

(
H∗(C)

)′.
However, this is not true in general. (It is even wrong in the case “C = C`1

∗ (X)”
for certain topological spaces X [12].) Duality statements of the above type can
only hold, if the images of the boundary operators are closed subspaces – as, for
example, in Theorem (3.2).

In order to prove Theorem (3.1), we apply the duality principles (Theorem (3.2)
and Theorem (3.3)) to mapping cones.

Clara Löh – clara.loeh@uni-muenster.de 7
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3.1 Mapping cones

Mapping cones of chain maps are a device translating questions about isomor-
phisms on homology into questions about the vanishing of homology groups (Lem-
ma (3.6)). Their construction is obviously modelled on the mapping cone (in the
category of topological spaces) of continuous maps.

Definition (3.5). 1. Let f : (C, ∂C) −→ (D, ∂D) be a morphism of normed chain
complexes. Then the mapping cone of f , denoted by Cone( f ), is the normed
chain complex defined by

Cone( f )n := Cn−1 ⊕ Dn

linked by the boundary operator that is given by the matrix

Cone( f )n(
−∂C 0

f ∂D

)
��

= Cn−1 ⊕

−∂C

��
f

��
99

99
99

99
Dn

∂D

��

Cone( f )n−1 = Cn−2 ⊕ Dn−1.

2. Dually, if f : (D, δD) −→ (C, δC) is a morphism of normed cochain complexes,
then the mapping cone of f , also denoted by Cone( f ), is the normed cochain
complex defined by

Cone( f )n := Dn+1 ⊕ Cn

and the coboundary operator determined by the matrix

Cone( f )n

(
−δD 0

f δC

)
��

= Dn+1 ⊕

−δD

��
f

��
99

99
99

99
9 Cn

δC

��

Cone( f )n+1 = Dn+2 ⊕ Cn+1.

In both cases, we equip the mapping cone with the direct sum of the norms, i.e.,
the norm given by ‖(x, y)‖ := ‖x‖+ ‖y‖. �

Clearly, if f is a morphism of Banach (co)chain complexes, then the mapping
cone Cone( f ) is also a Banach (co)chain complex.

The following lemma (of purely algebraic nature) characterises the main feature
of mapping cones:

Lemma (3.6). 1. Let f : C −→ D be a morphism of normed chain complexes. Then
the induced map H∗( f ) : H∗(C) −→ H∗(D) is an isomorphism (of vector spaces) if
and only if all homology groups H∗(Cone( f )) vanish.

2. Dually, let f : D −→ C be a morphism of normed cochain complexes. Then the
induced map H∗( f ) : H∗(D) −→ H∗(C) is an isomorphism if and only if all coho-
mology groups H∗(Cone( f )) vanish.
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In order to prove Theorem (3.1) it therefore remains to relate the mapping cone
of a morphism of normed chain complexes to the mapping cone of its dual.

Lemma (3.7). Let f : C −→ D be a morphism of normed chain complexes and f ′ : D′ −→
C′ the induced morphism between the dual complexes. Then there is a natural isomorphism

Cone( f )′ ∼= ΣCone( f ′)

of normed cochain complexes, relating the mapping cones of f and f ′. In particular,

H∗(Cone( f )′
) ∼= H∗(ΣCone( f ′)

)
.

3.2 Transferring (isometric) isomorphisms

Fusing the properties of mapping cones with the duality principle (Theorem (3.2))
yields a proof of the first part of Theorem (3.1):

Proof (of the first part of Theorem (3.1)). By Lemma (3.6), the map H∗( f ) is an isomor-
phism iff H∗(Cone( f )) = 0. In view of the duality principle (Theorem (3.2)) and
Lemma (3.7), this is equivalent to

0 = H∗(Cone( f )′
)

= H∗(ΣCone( f ′)
)

= H∗−1(Cone( f ′)
)
.

(The duality principle is applicable, because the cone of a morphism of Banach
chain complexes is a Banach chain complex.) On the other hand, the cohomlogy
groups H∗−1(Cone( f ′)) are all zero if and only if f ′ : D′ −→ C′ is an isomorphism
(Lemma (3.6)).

Similarly, combining the properties of mapping cones with the duality principle
for semi-norms (Theorem (3.3)) proves the second part of Theorem (3.1):

Proof (of the second part of Theorem (3.1)). By the first part, the map H∗( f ) is an iso-
morphism. That this isomorphism is isometric is a consequence of the duality prin-
ciple for semi-norms (Theorem (3.3)), namely:

Let n ∈ N and let α ∈ Hn(C). Using the duality principle for semi-norms twice
and the fact that H∗( f ′) is an isometric isomorphism, we obtain∥∥Hn( f )(α)

∥∥ = sup
{ 1
‖ψ‖∞

∣∣∣ ψ ∈ Hn(D′) and
〈
ψ, Hn( f )(α)

〉
= 1

}
= sup

{ 1
‖ψ‖∞

∣∣∣ ψ ∈ Hn(D′) and
〈

Hn( f ′)(ψ), α
〉

= 1
}

= sup
{ 1
‖Hn( f ′)(ψ)‖∞

∣∣∣ ψ ∈ Hn(D′) and
〈

Hn( f ′)(ψ), α
〉

= 1
}

= sup
{ 1
‖ϕ‖∞

∣∣∣ ϕ ∈ Hn(C′) and 〈ϕ, α〉 = 1
}

= ‖α‖,

as desired.

However, one cannot expect that a statement of the form “If H∗( f ) is an isometric
isomorphism, then also H∗( f ′) is an isometric isomorphism” holds.

Clara Löh – clara.loeh@uni-muenster.de 9



4 Applications to `1-homology Isomorphisms in `1-homology

4 Applications to `1-homology

The translation mechanism of Theorem (3.1) allows to transfer certain results from
bounded cohomology to `1-homology. We first investigate `1-homology of topo-
logical spaces, then `1-homology of discrete groups and finally link these two the-
ories.

4.1 `1-homology of topological spaces

Using the translation mechanism of Theorem (3.1), we now derive statements con-
cerning isomorphisms in `1-homology of spaces:

Corollary (4.1). Let f : X −→ Y be a continuous map of topological spaces.

1. The induced homomorphism H`1
∗ ( f ) : H`1

∗ (X) −→ H`1
∗ (Y) is an isomorphism if and

only if H∗
b( f ) : H∗

b(Y) −→ H∗
b(X) is an isomorphism.

2. If H∗
b( f ) : H∗

b(Y) −→ H∗
b(X) is an isometric isomorphism, then H`1

∗ ( f ) is also an
isometric isomorphism.

Proof. By definition, C∗
b(X) = (C`1

∗ (X))′ as well as C∗
b(Y) = (C`1

∗ (Y))′ and the
cochain map C∗

b( f ) : C∗
b(Y) −→ C∗

b(X) coincides with (C`1
∗ ( f ))′. Applying Theo-

rem (3.1) to C`1
∗ ( f ) proves the Corollary.

Remark (4.2). One can also define `1-homology and bounded cohomology of pairs
of topological spaces. Of course, the above corollary also holds in this setting of
relative theories [7]. �

Corollary (4.1) allows to transfer certain results from bounded cohomology to
`1-homology. For example, we obtain a new proof of the fact that `1-homology
depends only on the fundamental group and that amenable groups are a blind
spot of `1-homology (Corollary (4.5)):

Definition (4.3). A discrete group A is called amenable, if there is a left-invariant
mean on the set B(A, R) of bounded functions from A to R, i.e., if there is a linear
map m : B(A, R) −→ R satisfying

∀ f∈B(A,R) ∀a∈A m( f ) = m
(
b 7→ f (a−1 · b)

)
and

∀ f∈B(A,R) inf
{

f (a)
∣∣ a ∈ A

}
≤ m( f ) ≤ sup

{
f (a)

∣∣ a ∈ A
}

. �

Example (4.4). All finite and all Abelian groups are amenable. Moreover, the class
of amenable groups is closed under taking subgroups, quotients, and extensions.
An example of a non-amenable group is the free group Z ∗ Z. �

10 Clara Löh – clara.loeh@uni-muenster.de



Isomorphisms in `1-homology 4 Applications to `1-homology

Corollary (4.5) (Mapping theorem for `1-homology). The `1-homology of connected
countable CW-complexes depends only on the fundamental group. More generally: Let
f : X −→ Y be a continuous map of connected countable CW-complexes such that the
induced map π1( f ) : π1(X) −→ π1(Y) is surjective and has amenable kernel. Then the
induced homomorphism

H`1

∗ ( f ) : H`1

∗ (X) −→ H`1

∗ (Y)

is an isometric isomorphism.

Proof. It is a classical result in the theory of bounded cohomology that in this sit-
uation H∗

b( f ) : H∗
b(Y) −→ H∗

b(X) is an isometric isomorphism [3, 5; p. 40, Theo-
rem 4.3]. Applying Corollary (4.1) shows that H`1

∗ ( f ) is an isometric isomorphism.
By looking at the classifying map X −→ Bπ1(X) one sees that `1-homology indeed
depends only on the fundamental group (and the classifying map).

4.2 `1-homology of discrete groups

Similarly to the results in the previous subsection we can now derive statements
concerning isomorphisms in `1-homology of discrete groups:

Definition (4.6). Let G be a discrete group.

1. The `1-chain complex of G is the `1-completion C`1
∗ (G) of the standard bar

resolution of G with R-coefficients. I.e., if n ∈ N, then

C`1

n (G) :=
{

∑
g∈Gn+1

ag · g0 · [g1| . . . |gn]
∣∣∣∣ ∀g∈Gn+1 ag ∈ R and ∑

g∈Gn+1

|ag| < ∞
}

together with the norm
∥∥∑g∈Gn+1 ag · g0 · [g1| . . . |gn]

∥∥
1 := ∑g∈Gn+1 |ag| and

the G-action characterised by

h ·
(

g0 · [g1| . . . |gn]
)

:= (h · g0) · [g1| . . . |gn]

for all g ∈ Gn+1 and all h ∈ G. The boundary operator is the G-morphism
uniquely determined by

C`1

n (G) −→ C`1

n−1(G)
g0 · [g1| . . . |gn] 7−→ g0 · g1 · [g2| . . . |gn]

+
n−1

∑
j=1

(−1)j · g0 · [g1| . . . |gj−1|gj · gj+1|gj+2| . . . |gn]

+ (−1)n · g0 · [g1| . . . |gn−1].

2. The bounded chain complex of G is the dual

C∗
b(G) := C`1

∗ (G)′.
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3. The `1-homology of G is the homology of the coinvariants of the `1-chain
complex of G, i.e.,

H`1

∗ (G) := H∗
(
C`1

∗ (G)G
)
.

4. The bounded cohomology of G is the cohomology of the invariants of the
bounded chain complex of G, i.e.,

H∗
b(G) := H∗(C∗

b(G)G)
. �

Notice that the coinvariants VG of a Banach G-module V (i.e., V is a Banach space
with isometric G-action) are defined as

VG := V/span{g · v − v | v ∈ V, g ∈ G}.

Remark (4.7). The definition of `1-homology and bounded cohomology of discrete
groups fits also in a more general homological algebraic context. This allows to
compute `1-homology and bounded cohomology of discrete groups via certain
projective resolutions and injective resolutions respectively [5, 9]. For example,
C`1
∗ (G) and C∗

b(G) are projective/injective resolutions in this sense [7].
Moreover, one can also introduce `1-homology and bounded cohomology of dis-

crete groups with coefficients. The above definitions then cover the case with coef-
ficients in the trivial coefficient module R. �

Corollary (4.8). Let ϕ : H −→ G be a homomorphism of discrete groups.

1. Then the homomorphism H`1
∗ (ϕ) : H`1

∗ (H) −→ H`1
∗ (G) is an isomorphism if and

only if H∗
b(ϕ) : H∗

b(G) −→ H∗
b(H) is an isomorphism.

2. If H∗
b(ϕ) is an isometric isomorphism, then so is H`1

∗ (ϕ; f ).

Remark (4.9). Of course, this corollary has a generalisation to the case of `1-hom-
ology and bounded cohomology with coefficients. �

Proof. How are H`1
∗ (ϕ) and H∗

b(ϕ) defined? The homomorphism ϕ : H −→ G in-
duces an H-equivariant morphism C`1

∗ (ϕ) : C`1
∗ (H) −→ ϕ∗C`1

∗ (G) of Banach chain
complexes. Here, ϕ∗C`1

n (G) is the Banach space C`1
n (G) together with the H-action

induced by ϕ. Hence, we obtain a morphism

C`1

∗ (ϕ)H : C`1

∗ (H)H −→ ϕ∗C`1

∗ (G)H ↪→ C`1

∗ (G)G

of Banach chain complexes. By definition,

H`1

∗ (ϕ) := H∗
(
C`1

∗ (ϕ)H
)

: H`1

∗ (H) −→ H`1

∗ (G).

On the other hand, (C`1
∗ (H)H)′ = (C`1

∗ (H)′)H = C∗
b(H)H and similar for G. Thus

we obtain a morphism C`1
∗ (ϕ)′| : C∗

b(G) −→ C∗
b(H) and by definition

H∗
b(ϕ) := H∗(C`1

∗ (ϕ)′|
)

: H∗
b(G) −→ H∗

b(H).
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Now the commutative diagram

(
ϕ∗C`1

∗ (G)H
)′ (C`1

∗ (ϕ)H)′
//
(
C`1
∗ (H)H

)′

ϕ∗C∗
b(G)H (

ϕ∗C`1
∗ (G)′

)H
C`1
∗ (ϕ)′ |

//
(
C`1
∗ (H)′

)H C∗
b(G)H .

together with Theorem (3.1) applied to C`1
∗ (ϕ)H proves the corollary.

Corollary (4.8) enables us to carry over many results on bounded cohomology to
`1-homology. A small example of this procedure is the following:

Corollary (4.10). Let G be a discrete group, let A ⊂ G be an amenable normal subgroup.
Then the projection G −→ G/A induces an (isometric) isomorphism

H`1

∗ (G) ∼= H`1

∗ (G/A).

Proof. The corresponding homomorphism

H∗
b(G � G/A) : H∗

b(G/A) −→ H∗
b(G)

is an isometric isomorphism [5; Section 3.8]. Now Corollary (4.8) finishes the proof.

4.3 `1-homology via projective resolutions

Ivanov developed a homological algebraic approach to bounded cohomology [5]
and showed that bounded cohomology of spaces coincides with bounded coho-
mology of groups and hence can be computed by certain injective resolutions. Sim-
ilarly, by applying the translation mechanism of Theorem (3.1) to an appropriate
chain map

C`1

∗ (X) −→ C`1

∗
(
π1(X)

)
π1(X),

we can deduce that `1-homology of a space coincides with the `1-homology of the
fundamental group. Hence, `1-homology of spaces admits also a description in
terms of projective resolutions:

Corollary (4.11). Let X be a countable connected CW-complex with fundamental group G.

1. There is a canonical isometric isomorphism

H`1

∗ (X) ∼= H`1

∗ (G).

2. In particular: If C is a strong relatively projective resolution of the trivial Banach G-
module R, then there is a canonical isomorphism (degreewise isomorphism of semi-
normed vector spaces)

H`1

∗ (X) ∼= H∗(CG).
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Remark (4.12). Similarly to singular homology, there is also a version of `1-homol-
ogy with twisted coefficients and there is also a corresponding version of Corol-
lary (4.11) with twisted coefficients [7; Theorem 6.3]. �

Proof (of Corollary (4.11)). 1. In order to prove the first part of the corollary, we
proceed as follows:

a) For comparing H`1
∗ (X) and H∗(C`1

∗ (G)G), it is convenient to write also
H`1
∗ (X) in the form H∗(CG) for some Banach G-chain complex C.

As Park observed [9, 7; proof of Theorem 4.1,Proposition 6.2], the uni-
versal covering map X̃ −→ X induces an isometric isomorphism

C`1

∗ (X̃)G −→ C`1

∗ (X)

of Banach chain complexes. In particular, we obtain a canonical isomet-
ric isomorphism

H`1

∗ (X) ∼= H∗
(
C`1

∗ (X̃)G
)
.

b) Using a fundamental domain of the G-action on X̃ one can explicitly
construct a G-equivariant morphism

η : C`1

∗ (X̃) −→ C`1

∗ (G)

of Banach chain complexes. Clearly, it suffices to show that the corre-
sponding morphism ηG : C`1

∗ (X̃)G −→ C`1
∗ (G)G induces an isometric

isomorphism H∗(C`1
∗ (X̃)G) −→ H∗(C`1

∗ (G)G).

c) The idea is to apply Theorem (3.1) to the morphism ηG. Therefore, it is
necessary to investigate the properties of the dual (ηG)′: Ivanov showed
that the lower horizontal arrow in the commutative diagram

(
C`1
∗ (G)G

)′ (ηG)′
//
(
C`1
∗ (X̃)G

)′
(
C`1
∗ (G)′

)G (η′)G
//
(
C`1
∗ (X̃)′

)G

C∗
b(G)G // C∗

b(X̃)G

induces an isometric isomorphism on the level of cohomology [5; proof
of Theorem 4.1].

d) Finally, we apply Theorem (3.1) to the morphism ηG, which allows us
to deduce that ηG induces an isometric isomorphism on the level of ho-
mology.
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2. Because C`1
∗ (G) is a strong relatively projective resolution of R, standard

methods from homological algebra [7; Appendix A] provide us with a canon-
ical isomorphism

H∗(CG) ∼= H∗
(
C`1

∗ (G)G
)
.

Thus the first part yields H`1
∗ (X) ∼= H∗(CG), as was to be shown.

(This isomorphism is in general not isometric – the definition of strong rela-
tively projective resolutions allows to scale the norm.)

5 Making a case for `1-homology

The results presented so far might indicate that `1-homology is merely a shadow of
bounded cohomology. But in the setting of non-compact manifolds there are also
genuine applications of `1-homology [8]:

The simplicial volume of an oriented, connected, not necessarily compact man-
ifold V is defined by the `1-semi-norm of the fundamental class of V in locally finite
singular homology [3].

In particular, the simplicial volume of non-compact manifolds can be infinite.
For a special type of non-compact manifolds there is a finiteness criterion in terms
of `1-homology:

Theorem (5.1). Let (W, ∂W) be an oriented, compact, connected n-manifold with bound-
ary and let V := W◦. Then the following are equivalent:

1. The simplicial volume ‖V‖ is finite.

2. The fundamental class of ∂W vanishes in `1-homology, i.e.,

Hn−1(i∂W)
(
[W]

)
= 0 ∈ H`1

n−1(∂W).

Here, i∂W denotes the canonical inclusion C∗ (∂W) ↪→ C`1
∗ (∂W).

This phenomenon is probably not visible on the level of bounded cohomology,
because the Kronecker product linking bounded cohomology and `1-homology is
not able to distinguish between `1-homology and reduced `1-homology and there-
fore cannot detect the vanishing of a certain class in unreduced `1-homology.

This finiteness criterion is a generalisation of Gromov’s necessary condition “If
‖V‖ < ∞, then ‖∂W‖ = 0” [3].

Example (5.2). Since ‖S0‖ = 2, we obtain ‖R‖ = ∞. On the other hand, if n ∈ N>1,
then ‖Rn‖ < ∞. More precisely, if n ∈ N>1, then ‖Rn‖ = 0 [3]. �

Example (5.3). If V is a complete, connected, hyperbolic manifold of finite volume,
then ‖V‖ is finite. �

Moreover, in case the simplicial volume of a non-compact manifold is finite, it is
easier to see how to calculate it in terms of `1-homology than in terms of bounded
cohomology.
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