Isomorphisms in £!-homology
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Abstract. Taking the ¢'-completion and the topological dual of the singular chain
complex gives rise to ¢!-homology and bounded cohomology respectively. Un-
like ¢!-homology, bounded cohomology is quite well understood by the work of
Gromov and Ivanov. We derive a mechanism linking isomorphisms on the level
of homology of Banach chain complexes to isomorphisms on the level of coho-
mology of the dual Banach cochain complexes and vice versa. Therefore, certain
results on bounded cohomology can be transferred to ¢!-homology. For example,
we obtain a new proof that ¢!-homology depends only on the fundamental group
and that ¢!-homology admits a description in terms of projective resolutions.
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1 Introduction

The simplicial volume is a topological invariant of oriented manifolds measuring
the complexity of the fundamental class with real coefficients with respect to the
Mnorm: If M is an oriented, closed, connected n-manifold, then the simplicial
volume of M is defined as

M| := {llc|l; | ¢ € Cx (M) is an R-fundamental cycle of M}.

For example, the simplicial volume of spheres and tori is zero, whereas the sim-
plicial volume of negatively curved manifolds is non-zero [4, 14]. Various results
indicate that the simplicial volume is a “topological approximation” of the Rieman-
nian volume:

o If M is an oriented, closed, connected, hyperbolic #n-manifold, then |M|| =
vol(M) /vy [3, 14, 1].
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Figure (1.1): Linking various (co)homology theories related to singular homology

e If M and N are oriented, closed, connected, Riemannian manifolds with iso-
metric Riemannian universal covering, then [3, 14, 13]

(Ml [Nl

vol(M)  vol(N)’

e If M is an oriented, closed, connected, smooth n-manifold, then [3]

IM|| < (n—1)"-n! minvol(M).

It is almost impossible to calculate the simplicial volume directly. However, Gro-
mov discovered that bounded cohomology can be used to systematically study the
simplicial volume [3]. Bounded cohomology is the functional analytic twin of sin-
gular cohomology - it is defined using the topological dual of the singular chain
complex instead of the algebraic one. This change of the underlying cochain com-
plex results in quite peculiar behaviour:

e Bounded cohomology of spaces with amenable fundamental group vanishes
(in non-zero degree) [3, 5].

e Bounded cohomology depends only on the fundamental group [3, 5].

o However, there is still a description of bounded cohomology of groups in
terms of a certain flavour of homological algebra [5].

The corresponding homology theory is ¢!-homology — defined via the ¢!-com-
pletion of the singular chain complex (cf. Figure (1.1)) — and it is natural to ask
whether ¢!-homology behaves similarly. For example:

e Does ¢!-homology of spaces with amenable fundamental group vanish?
e Does /!-homology also depend only on the fundamental group?

e Can (!-homology of groups be described in terms of homological algebra?
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Isomorphisms in ¢!-homology 2 Homology of normed chain complexes

e More generally, how are bounded cohomology and ¢!-homology related? Is
there some kind of duality?

Matsumoto and Morita [10] found the following duality principle: Bounded co-
homology of a space vanishes if and only if its /' -homology vanishes. In particular,
the first question can be answered affirmatively.

Bouarich [2] gave the first proof that ¢!-homology depends only on the funda-
mental group. His proof relies on results in bounded cohomology, the duality prin-
ciple by Matsumoto and Morita [10] and an ¢!-version of Brown’s theorem.

We show that applying Matsumoto and Morita’s duality principle (generalised
to all Banach chain complexes and their duals [6; Proposition 1.2]) to mapping
cones of morphisms of Banach chain complexes allows to translate certain results
from bounded cohomology to ¢'-homology and vice versa (see Theorem (3.1) and
Section 4); however, one can show that there is no real duality between ¢!-homology
and bounded cohomology [7; Remark 3.3].

Our translation mechanism establishes links between ¢!-homology and bounded
cohomology of discrete groups, as well as between ¢!-homology of spaces and ¢!-
homology of their fundamental group, analogous to Ivanov’s result on bounded
cohomology. In particular, this gives a new proof that ¢!-homology of a space
depends only on its fundamental group and since ¢!-homology of groups admits
a description in terms of homological algebra, the same is true for /!-homology of
spaces. This is explained in Section 4 — more details and more general results can
be found in the original article [7].

In comparison to Bouarich’s proof, our approach needs more information about
bounded cohomology, but seems to be in total more lightweight and yields more
general results.

Moreover, Park [9] tried to use an approach similar to Ivanov’s work on bounded
cohomology to prove, for example, that £!-homology of spaces depends only on the
fundamental group. However, not all of Ivanov’s arguments can be carried over to
¢!-homology and her proofs contain a significant gap [7; Caveat 5.9 and 6.4].

2 Homology of normed chain complexes

In this section, we introduce the basic objects of study, i.e., normed chain complexes
and their homology.

2.1 Normed chain complexes

Definition (2.1). 1. A normed chain complex is a chain complex of normed
vector spaces, where all boundary morphisms are bounded linear operators.
Analogously, a normed cochain complex is a cochain complex of normed
vector spaces, where all coboundary morphisms are bounded linear opera-
tors.
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2. A Banach (co)chain complex is a normed (co)chain complex consisting of
Banach spaces.

3. A morphism of normed (co)chain complexes is a (co)chain map between
normed (co)chain complexes consisting of bounded operators. o

In this talk, all Banach spaces are Banach spaces over R and all (co)chain com-
plexes are indexed over N.

Example (2.2). Let X be a topological space.

1. The ¢!-norm on the singular chain complex C, (X) with real coefficients is
defined as follows: If ¢ = Z;(:O aj -0 € Cs (X), then

k
llelly =} lagl-
j=0

2. The boundary operator 9,,: C, (X) — C,_1 (X) is — with respect to the ¢!-
norm — a bounded operator with operator norm (1 + 1). Hence, C, (X) is a
normed chain complex. Clearly, C. (X) is in general not complete and thus
this complex is no Banach chain complex.

3. Let p € (1, c0]. Then the singular chain complex with respect to the ¢’-norm is
not a normed chain complex, because the boundary operator is not bounded:
For example, for n € N let 0q,...,04: A — X be n distinct k-simplices
satsifying doy = --- = doy,. We now consider ¢, := 1/n- (o1 +---+0y) €
Ck (X). By definition, dc, is independent of 1, but lim;, .co [[c, ||, = 0. o

Definition (2.3). Let (C,d) be a normed chain complex.

1. The completion (C, 9) of C is the Banach chain complex defined by (C), :=
Cy. Since 9,: C; — C,_1 is a bounded operator, it extends to a bounded
operator 9,: C, — C,,_1, which clearly satisfies dod=0.

2. The dual cochain complex (C’, d") is the Banach cochain complex defined by
Vuen  (C)":=(Ca)’,

where -’ stands for taking the (topological) dual normed vector space, to-
gether with the coboundary operators (9')" := (d,,11) and the norm given

by || flle == sup{|f(c)| | ¢ € Cu, [lc[l = 1} for f € (C")". ©

Example (2.4). Let X be a topological space.
1. The ¢'-chain complex of X is the ¢!-completion
1
') =X

of the normed chain complex C, (X).
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Isomorphisms in ¢!-homology 2 Homology of normed chain complexes

2. The Banach cochain complex
» 1
Cy(X) = (CL (X)) = (C. (X))’
is called the bounded cochain complex of X.

3. If f: X — Y is a continuous map of topological spaces, then the induced
map C, (f): Ci (X) — C. (Y) is a chain map that is bounded in each de-
gree (with operator norm equal to 1) ) ie, itisa morph1sm of normed chain

complexes. Its extension C[ (f): CL(X) — C( (Y) is a morphism of Ba-
nach chain complexes and its dual C;(f): C;(Y) — C;(X) is a morphism of
Banach cochain complexes. ©

Other prominent examples of Banach (co)chain complexes are ¢'-chain com-
plexes and bounded cochain complexes of discrete groups (see Subsection 4.2).

2.2 Semi-norms on homology

Clearly, the presence of chain complexes calls for the investigation of the corre-
sponding homology. In the case of normed chain complexes, the homology groups
carry an additional piece of information — the semi-norm.

Definition (2.5). 1. Let (C,d) be a normed chain complex and let # € N. The
n-th homology of C is the quotient

ker(d,: C, — C,_1)

Hn(C) o im(9;41: Cpy1 — Cn)'

2. Dually, if (C, J) is a normed cochain complex, then its #-th cohomology is the
quotient
ker(8": C" — C1)

H"(C) := .
() im(on-1: Cn—1 — Cn)

3. Let C be a normed chain complex. Then the norm || - || on C induces a semi-
norm, also denoted by || - ||, on the homology H.(C) as follows: If « € H,,(C),
then

||| := inf{]lc|| | ¢ € Cu, d(c) =a}.

Similarly, we define a semi-norm on the cohomology of normed cochain com-
plexes. o

Example (2.6). Let X be a topologica space.
1. The ¢'-homology of X is defined as

H' (X) == H.(C! (X)).
Dually, the bounded cohomology of X is given by
Hy (X) = H* (C}(X).
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2. The semi-norms on Hfl (X) and Hy;(X) are the ones induced by || - ||; and || - ||,

respectively and are also denoted by || - ||; and || - ||, respectively.

3. If f: X — Y is a continuous map of pairs of topological spaces, then the
maps on /! —homology and bounded cohomology induced by C[ (f)and C;(f)
are denoted by HY (f) and H(f) respectively. ©

An example of a topological invariant defined in terms of the ¢!-semi-norm on
singular homology is the simplicial volume:

Example (2.7). Let M be an oriented, closed, connected n-dimensional manifold
and let [M] € H, (M) be the image of the integral fundamental class of M under
the change of coefficients homomorphism. Then the simplicial volume of M is
defined as

1M1 == [ (M) ©

Because the images of the (co)boundary operators of Banach (co)chain complexes
are not necessarily closed, the induced semi-norms on (co)homology need not be
norms. Therefore, it is sometimes convenient to look at the corresponding reduced

versions H, (C) and H™ (C) instead.

Remark (2.8). Any morphism f: C — D of normed chain complexes induces
linear maps H,(f): H,(C) — Hy(D). Since f is continuous in each degree,
these maps descend to linear maps H,(f): Hy,(C) — Hyu(D). Moreover, the
maps H,(f) and H,(f) are bounded. O

In order to understand semi-norms on the homology of normed chain com-
plexes, it suffices to consider the case of Banach chain complexes. Namely, by
approximating boundaries one obtains [7, 11; Proposition 2.7, Lemma 2.9]:

Proposition (2.9). Let D be a normed chain complex and let C be a dense subcom-
plex. Then the induced map H.(C) — H.(D) is isometric. In particular, the induced
map H.(C) — H.(D) must be injective.

Example (2.10). Let X be a topological space. Then the homomorphism H, (X) —
H/ (X) induced by the mclusmn C.(X) C C/ (X) is isometric with respect to the
semi-norms on H, (X) and H; 1 (X) induced by the ¢!-norm.

In particular, if H‘ (X) =0, then ||af|; =0foralla € H, (X). o

Therefore, the simplicial volume can be computed by ¢!-homology. Compared
to singular homology, ¢!-homology and bounded cohomology share the advantage
to vanish for a large class of spaces.

3 Duality

The goal is now to find a mechanism that allows to translate results from bounded
cohomology to ¢'-homology and vice versa. Le., we are searching for an analog
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Isomorphisms in ¢!-homology 3 Duality

(or at least an approximation) in the framework of Banach chain complexes of the
following classical theorem: If C is an R-chain complex, then the Kronecker product
yields a natural isomorphism

H* (homg(C,R)) = homg (H.(C),R).
Our main result is:
Theorem (3.1). Let f: C — D be a morphism of Banach chain complexes and let
f': D' — C' be its dual.
1. The induced map H.(f): H.(C) — H.(D) is an isomorphism of vector spaces if
and only if H*(f'"): H*(D') — H*(C') is an isomorphism of vector spaces.

2. IfH*(f"): H*(D') — H*(C') is an isometric isomorphism, then also H.(f) is an
isometric isomorphism.

First steps towards a proof of this theorem are the following observations by
Johnson [6]/Matsumoto and Morita [10], and Gromov [3, 1] respectively:

Theorem (3.2) (Duality principle). Let C be a Banach chain complex and let C' be its
dual. Then H.(C) vanishes if and only if H*(C') vanishes.

This duality principle can be understood as an “absolute” version of duality,
whereas Theorem (3.1) can be viewed as a “relative” version. The duality principle
shows in particular that ¢/!-homology is not always trivial.

Theorem (3.3) (Duality principle for semi-norms). Let C be a normed chain complex
and let n € N. Then

— 1 n / —
I —sup{m | € H'(C))and (g,a) =1}
holds for each « € H,(C). Here, sup @ := 0.

Example (3.4). In particular, the simplicial volume can not only be computed by
¢!-homology, but also by bounded cohomology. Historically, this was the first sys-
tematic approach to study simplicial volume. o

Thus it might be tempting to aim at a result of the type: Let C be a Banach chain
complex. Then the Kronecker product induces a natural isomorphism

!

H*(C') = (H.(C))" or H(C') = (H.(C))".

However, this is not true in general. (It is even wrong in the case “C = Cfl (X)”
for certain topological spaces X [12].) Duality statements of the above type can
only hold, if the images of the boundary operators are closed subspaces — as, for
example, in Theorem (3.2).

In order to prove Theorem (3.1), we apply the duality principles (Theorem (3.2)
and Theorem (3.3)) to mapping cones.
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3.1 Mapping cones

Mapping cones of chain maps are a device translating questions about isomor-
phisms on homology into questions about the vanishing of homology groups (Lem-
ma (3.6)). Their construction is obviously modelled on the mapping cone (in the
category of topological spaces) of continuous maps.

Definition (3.5). 1. Let f: (C,0¢) — (D, dP) be a morphism of normed chain
complexes. Then the mapping cone of f, denoted by Cone(f), is the normed
chain complex defined by

Cone(f)n 1= Cy_1® Dy,

linked by the boundary operator that is given by the matrix

Cone(f)n =Cy_1 @ Dy

TN

Cone(f)n—l =Cp—2® Dy_1.

2. Dually,if f: (D, ép) — (C, d¢) is a morphism of normed cochain complexes,
then the mapping cone of f, also denoted by Cone(f), is the normed cochain
complex defined by

Cone(f)" := D"l g C"

and the coboundary operator determined by the matrix

Cone(f)" =prntlg C"

EITEAN,

Cone(f)”“ = D2 g Cntl,

In both cases, we equip the mapping cone with the direct sum of the norms, i.e.,
the norm given by |[(x,)]| := [l + ]| o

Clearly, if f is a morphism of Banach (co)chain complexes, then the mapping
cone Cone( f) is also a Banach (co)chain complex.

The following lemma (of purely algebraic nature) characterises the main feature
of mapping cones:

Lemma (3.6). 1. Let f: C — D be a morphism of normed chain complexes. Then
the induced map H.(f): H.(C) — H.(D) is an isomorphism (of vector spaces) if
and only if all homology groups H,(Cone(f)) vanish.

2. Dually, let f: D — C be a morphism of normed cochain complexes. Then the
induced map H*(f): H*(D) — H*(C) is an isomorphism if and only if all coho-
mology groups H*(Cone( f)) vanish.
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In order to prove Theorem (3.1) it therefore remains to relate the mapping cone
of a morphism of normed chain complexes to the mapping cone of its dual.

Lemma (3.7). Let f: C — D be a morphism of normed chain complexes and f': D' —
C’ the induced morphism between the dual complexes. Then there is a natural isomorphism

Cone(f)" = ZCone(f")
of normed cochain complexes, relating the mapping cones of f and f'. In particular,

H*(Cone(f)") = H*(ZCone(f")).

3.2 Transferring (isometric) isomorphisms

Fusing the properties of mapping cones with the duality principle (Theorem (3.2))
yields a proof of the first part of Theorem (3.1):

Proof (of the first part of Theorem (3.1)). By Lemma (3.6), the map H.(f) is an isomor-
phism iff H.(Cone(f)) = 0. In view of the duality principle (Theorem (3.2)) and
Lemma (3.7), this is equivalent to

0 = H*(Cone(f)') = H* (£Cone(f')) = H*~!(Cone(f")).

(The duality principle is applicable, because the cone of a morphism of Banach
chain complexes is a Banach chain complex.) On the other hand, the cohomlogy
groups H*~!(Cone(f’)) are all zero if and only if f': D’ — C’ is an isomorphism
(Lemma (3.6)). O

Similarly, combining the properties of mapping cones with the duality principle
for semi-norms (Theorem (3.3)) proves the second part of Theorem (3.1):

Proof (of the second part of Theorem (3.1)). By the first part, the map H.(f) is an iso-
morphism. That this isomorphism is isometric is a consequence of the duality prin-
ciple for semi-norms (Theorem (3.3)), namely:

Letn € N and let « € H,(C). Using the duality principle for semi-norms twice
and the fact that H*(f’) is an isometric isomorphism, we obtain

[HaF)(@)] = sup{ i | 9 & H(D) and (y F () @) =1}
1 n !/ n !/ _
= sup{ i [ ¥ € H'(D) and (H'(£)(9),2) = 1]
1 n !/ n n !/ —
= sup{ gy | ¥ € H'(D) and (R () (9), @) = 1]
= sup{(pl||0c> ‘ ¢ € H'(C') and (¢, a) = 1}
=l
as desired. 0

However, one cannot expect that a statement of the form “If H,(f) is an isometric
isomorphism, then also H*(f’) is an isometric isomorphism” holds.
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4 Applications to /!-homology

The translation mechanism of Theorem (3.1) allows to transfer certain results from
bounded cohomology to ¢!-homology. We first investigate ¢!-homology of topo-
logical spaces, then ¢!-homology of discrete groups and finally link these two the-
ories.

41 ('-homology of topological spaces

Using the translation mechanism of Theorem (3.1), we now derive statements con-
cerning isomorphisms in ¢!-homology of spaces:

Corollary (4.1). Let f: X — Y be a continuous map of topological spaces.

1. The induced homomorphism Hfl (f): Hfl (X) — HY (Y) is an isomorphism if and
only if HY (f): Hy(Y) — H{(X) is an isomorphism.

2. If Hy(f): Hp(Y) — H{(X) is an isometric isomorphism, then Hfl (f) is also an
isometric isomorphism.

Proof. By definition, C}(X) = (Cfl(X))’ as well as Cf;(Yl) = (Cfl(Y))’ and the
cochain map (;t*) (f): Ci(Y) — C(X) coincides with (CL (f))'. Applying Theo-
rem (3.1) to CL (f) proves the Corollary. O

Remark (4.2). One can also define ¢!-homology and bounded cohomology of pairs
of topological spaces. Of course, the above corollary also holds in this setting of
relative theories [7].

Corollary (4.1) allows to transfer certain results from bounded cohomology to
¢-homology. For example, we obtain a new proof of the fact that ¢!-homology
depends only on the fundamental group and that amenable groups are a blind
spot of ¢!-homology (Corollary (4.5)):

Definition (4.3). A discrete group A is called amenable, if there is a left-invariant
mean on the set B(A, R) of bounded functions from A to R, i.e., if there is a linear
map m: B(A,R) — R satisfying

Viep(ar) Yaca m(f) =m(b— f(a~'-b))

and
Y feB(AR) inf{f(a) |a e A} <m(f) <sup{f(a)|ac A}. o

Example (4.4). All finite and all Abelian groups are amenable. Moreover, the class
of amenable groups is closed under taking subgroups, quotients, and extensions.
An example of a non-amenable group is the free group Z * Z. o
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Corollary (4.5) (Mapping theorem for ¢'-homology). The ¢!-homology of connected
countable CW-complexes depends only on the fundamental group. More generally: Let
f: X — Y be a continuous map of connected countable CW-complexes such that the
induced map m1(f): m1(X) — m1(Y) is surjective and has amenable kernel. Then the
induced homomorphism X

HY (F): HE (X) — HE (Y)
is an isometric isomorphism.

Proof. 1t is a classical result in the theory of bounded cohomology that in this sit-
uation Hy(f): H(Y) — Hp(X) is an 1sometr1c isomorphism [3, 5; p. 40, Theo-
rem 4.3]. Applymg Corollary (4.1) shows that Hf (f) is an isometric isomorphism.
By looking at the classifying map X — B7ty(X) one sees that ¢/'-homology indeed
depends only on the fundamental group (and the classifying map). O

42 ('-homology of discrete groups

Similarly to the results in the previous subsection we can now derive statements
concerning isomorphisms in /!-homology of discrete groups:

Definition (4.6). Let G be a discrete group.

1. The ¢!-chain complex of G is the ¢!-completion c!' (G) of the standard bar
resolution of G with R-coefficients. l.e., if n € N, then

C( { Y ag-20- (81l 18n] Voegri1 g € Rand Y lag] < oo}
geGn+l ‘ geGntl
together with the norm ||, dg - 8o - 8nlll; == Lgegnn lag| and

the G-action characterised by
I (8o [81] - 18n]) == (h-g0) - g1 - Ign]
for all ¢ € G"*! and all h € G. The boundary operator is the G-morphism
uniquely determined by
Ci (G) — G (G)

80 [g1]---|gn] — g0- 81 (82| .- Ign]
n—1 )
+ Y (1) go-[g1].--18gj-118j - &j+1l8j+2l - - - 18n]
=1

+ (7”” 80 - [gl‘ oo |gn 1.

2. The bounded chain complex of G is the dual
Gi(G) :=CL (G).
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3. The ¢!-homology of G is the homology of the coinvariants of the ¢!-chain
complex of G, i.e., ) )
HY (G) := H.(CL (G)g).

4. The bounded cohomology of G is the cohomology of the invariants of the
bounded chain complex of G, i.e.,

H; (G) == H' (G (G)°). o

Notice that the coinvariants V; of a Banach G-module V (i.e., V is a Banach space
with isometric G-action) are defined as

Vg:=V/span{g-v—v|veV,ge G}

Remark (4.7). The definition of ¢!-homology and bounded cohomology of discrete
groups fits also in a more general homological algebraic context. This allows to
compute ¢!-homology and bounded cohomology of discrete groups via certain
proj jective resolutions and injective resolutions respectively [5, 9]. For example,
C( (G) and G (G) are projective/injective resolutions in this sense [7].

Moreover, one can also introduce ¢!-homology and bounded cohomology of dis-
crete groups with coefficients. The above definitions then cover the case with coef-
ficients in the trivial coefficient module R. o

Corollary (4.8). Let ¢: H — G be a homomorphism of discrete groups.

1. Then the homomorphism Hfl (9): Hfl (H) — Hfl (G) is an isomorphism if and
only if HY (¢): Hy(G) — Hy(H) is an isomorphism.

2. If Hy (@) is an isometric isomorphism, then so is Hfl (@; f).

Remark (4.9). Of course, this corollary has a generalisation to the case of £!-hom-
ology and bounded cohomology with coefficients. o

Proof. How are HE1 (@) and H} () def1ned7 The homornorphlsrn ¢: H— Gin-
duces an H—equlvarlant morphism C’Z (9): Cé (H) — ¢ Ce (G) of Banach chain
complexes. Here, qo*Cé (G) is the Banach space C 1( G) together with the H-action
induced by ¢. Hence, we obtain a morphism

Cl(g)n: C(H)n — ¢"Cl (G = CI(G)g
of Banach chain complexes. By definition,
H. (9) := H.(CL ()n): HI (H) — H(G).

On the other hand, (C! ( g) = (Cfl(H)’)H = Cg(H)H and similar for G. Thus
we obtain a morphism Cg (¢)'|: Gi(G) — C{i(H) and by definition

Hi (@) == H* (CL (¢)']): Hy(G) — Hy(H).
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Now the commutative diagram

L (@)n)
R —

(9°CL (G)n) (CF (H)m)'
9" Gy () (rcl (6" g (L ()™ C(G)M.
together with Theorem (3.1) applied to Cﬁl (¢) 1 proves the corollary. O

Corollary (4.8) enables us to carry over many results on bounded cohomology to
¢'-homology. A small example of this procedure is the following:

Corollary (4.10). Let G be a discrete group, let A C G be an amenable normal subgroup.
Then the projection G — G/ A induces an (isometric) isomorphism

H'(G) = H! (G/A).
Proof. The corresponding homomorphism
Hy(G - G/A): Hy(G/A) — H,(G)
is an isometric isomorphism [5; Section 3.8]. Now Corollary (4.8) finishes the proof.
O

4.3 ('-homology via projective resolutions

Ivanov developed a homological algebraic approach to bounded cohomology [5]
and showed that bounded cohomology of spaces coincides with bounded coho-
mology of groups and hence can be computed by certain injective resolutions. Sim-
ilarly, by applying the translation mechanism of Theorem (3.1) to an appropriate
chain map ) )

CL (X) — CL (m1(X)) my(x0)s

we can deduce that ¢!-homology of a space coincides with the ¢!-homology of the
fundamental group. Hence, ¢!-homology of spaces admits also a description in
terms of projective resolutions:

Corollary (4.11). Let X be a countable connected CW-complex with fundamental group G.

1. There is a canonical isometric isomorphism
H' (X) = H! (G).

2. In particular: If C is a strong relatively projective resolution of the trivial Banach G-
module R, then there is a canonical isomorphism (degreewise isomorphism of semi-
normed vector spaces)

o ~
H. (X) = H.(Co).
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Remark (4.12). Similarly to singular homology, there is also a version of ¢!-homol-
ogy with twisted coefficients and there is also a corresponding version of Corol-
lary (4.11) with twisted coefficients [7; Theorem 6.3].

Proof (of Corollary (4.11)). 1. In order to prove the first part of the corollary, we
proceed as follows:

a) For comparing Hf (X) and H*(Cfl (G)g), it is convenient to write also
HK (X) in the form H, (Cg) for some Banach G-chain complex C.

As Park observed [9, 7; proof of Theorem 4.1,Proposition 6.2], the uni-
versal covering map X — X induces an isometric isomorphism

1,5 1
Cl (X)g — CL(X)

of Banach chain complexes. In particular, we obtain a canonical isomet-
ric isomorphism
1 1,5
H{ (X) = H,(C{ (X)g)-

b) Using a fundamental domain of the G-action on X one can explicitly
construct a G-equivariant morphism

7: c(X) — c(G)

of Banach chain complexes. Clearly, it suffices to show that the corre-
sponding morphlsm lek CZ X)g — Cé (G)¢ induces an isometric
isomorphism H*(CZ (X)g) — Hx (Cé (G)g)-

¢) The idea is to apply Theorem (3.1) to the morphism 7. Therefore, it is

necessary to investigate the properties of the dual (17g)’: Ivanov showed
that the lower horizontal arrow in the commutative diagram

(ng)

(C(G)g) — (CL(X)g)’
.

C/l (77) (Cfl )

Ci(G)e —— (X

induces an isometric isomorphism on the level of cohomology [5; proof
of Theorem 4.1].

d) Finally, we apply Theorem (3.1) to the morphism #g, which allows us
to deduce that 1 induces an isometric isomorphism on the level of ho-
mology.
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2. Because Cfl (G) is a strong relatively projective resolution of R, standard
methods from homological algebra [7; Appendix A] provide us with a canon-
ical isomorphism X

H.(Cg) = H.(C{ (G)g)-
Thus the first part yields Hfl (X) =2 H.(Cg), as was to be shown.

(This isomorphism is in general not isometric — the definition of strong rela-
tively projective resolutions allows to scale the norm.) O

5 Making a case for /-homology

The results presented so far might indicate that £!-homology is merely a shadow of
bounded cohomology. But in the setting of non-compact manifolds there are also
genuine applications of ¢!-homology [8]:

The simplicial volume of an oriented, connected, not necessarily compact man-
ifold V is defined by the ¢!-semi-norm of the fundamental class of V in locally finite
singular homology [3].

In particular, the simplicial volume of non-compact manifolds can be infinite.
For a special type of non-compact manifolds there is a finiteness criterion in terms
of £'-homology:

Theorem (5.1). Let (W, 0W) be an oriented, compact, connected n-manifold with bound-
ary and let V := W°. Then the following are equivalent:

1. The simplicial volume ||V || is finite.
2. The fundamental class of W vanishes in £'-homology, i.e.,
. 1
Hy—1(iaw) ([W]) = 0 € H,,_; (0W).

Here, iy denotes the canonical inclusion C, (dW) — ct (oW).

This phenomenon is probably not visible on the level of bounded cohomology,
because the Kronecker product linking bounded cohomology and ¢!-homology is
not able to distinguish between ¢!-homology and reduced ¢!-homology and there-
fore cannot detect the vanishing of a certain class in unreduced ¢!-homology.

This finiteness criterion is a generalisation of Gromov’s necessary condition “If
|V] < oo, then |[oW| = 0" [3].

Example (5.2). Since ||S°|| = 2, we obtain ||R|| = 0. On the other hand, if n € N,
then ||R"|| < oo. More precisely, if n € N- 1, then |[R"| = 0 [3]. o
Example (5.3). If V is a complete, connected, hyperbolic manifold of finite volume,
then || V|| is finite. o

Moreover, in case the simplicial volume of a non-compact manifold is finite, it is
easier to see how to calculate it in terms of ¢!-homology than in terms of bounded
cohomology.
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